

EUROPEAN COMMITTEE FOR STANDARDIZATION

C O M I T É E U R O P É E N D E N O R M A LI S A T I O N

EUR OP ÄIS C HES KOM ITEE FÜR NOR M UN G

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2008 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 15748-13:2008 D/E/F

CEN

WORKSHOP

AGREEMENT

 CWA 15748-13

 July 2008

ICS 35.240.50

English version

 Extensions for Financial Services (XFS) interface specification -
Release 3.10 - Part 13: Alarm Device Class Interface -

Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

Page 2
CWA 15748-13:2008

Table of Contents

Foreword ... 3

1. Introduction.. 6
1.1 Background to Release 3.10 ...6

1.2 XFS Service-Specific Programming...6

2. Alarms .. 7

3. References ... 8

4. Info Commands ... 9
4.1 WFS_INF_ALM_STATUS ...9

4.2 WFS_INF_ALM_CAPABILITIES ..11

5. Execute Commands .. 12
5.1 WFS_CMD_ALM_SET_ALARM ...12

5.2 WFS_CMD_ALM_RESET_ALARM ..13

5.3 WFS_CMD_ALM_RESET ...14

6. Events... 15
6.1 WFS_SRVE_ALM_DEVICE_SET ...15

6.2 WFS_SRVE_ALM_DEVICE_RESET..16

7. C - Header file .. 17

Page 3
CWA 15748-13:2008

Foreword

This CWA is revision 3.10 of the XFS interface specification.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2007-11-29. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.10.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface- Programmer's Reference

Parts 19 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Page 4
CWA 15748-13:2008

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class

Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Parts 48 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 3.0
(CWA 14050) to Version 3.10 (this CWA) - Programmer's Reference

Part 62: Printer Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA) -
Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.02 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.03 (CWA 14050) to Version 3.10 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA)
- Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.01 (CWA 14050) to
Version 3.10 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version
3.10 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA) -
Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.02 (CWA 14050) to Version 3.10 (this
CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cen.eu/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS
makes no warranty, express or implied, with respect to this document.

This CEN Workshop Agreement is publicly available as a reference document from the National Members of
CEN : AENOR, AFNOR, ASRO, BDS, BSI, CSNI, CYS, DIN, DS, ELOT, EVS, IBN, IPQ, IST, LVS, LST, MSA,
MSZT, NEN, NSAI, ON, PKN, SEE, SIS, SIST, SFS, SN, SNV, SUTN and UNI.

Comments or suggestions from the users of the CEN Workshop Agreement are welcome and should be addressed
to the CEN Management Centre.

Page 5
CWA 15748-13:2008

Revision History:

3.0 October 18, 2000 Initial Release.

3.10 November 29, 2007 For a description of changes see CWA 15748-72:2007 ALM
Migration from Version 3.0 to Version 3.10.

Page 6
CWA 15748-13:2008

1. Introduction

1.1 Background to Release 3.10

The CEN/ISSS XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor
software interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are
developed within the CEN/ISSS (European Committee for Standardization/Information Society Standardization
System) Workshop environment. CEN/ISSS Workshops aim to arrive at a European consensus on an issue that can
be published as a CEN Workshop Agreement (CWA).

The CEN/ISSS XFS Workshop encourages the participation of both banks and vendors in the deliberations required
to create an industry standard. The CEN/ISSS XFS Workshop achieves its goals by focused sub-groups working
electronically and meeting quarterly.

Release 3.10 of the XFS specification is based on a C API and is delivered with the continued promise for the
protection of technical investment for existing applications. This release of the XFS specification has been
prompted by a series of factors.

There has been a technical imperative to extend the scope of the existing specification to include new devices, such
as the Barcode Reader, Card Dispenser and Item Processing Module.

Similarly, there has also been pressure, through implementation experience and additional requirements, to extend
the functionality and capabilities of the existing devices covered by the specification.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of Service
Providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the
command is as similar as possible across all services, since a major objective of XFS is to standardize function
codes and structures for the broadest variety of services. For example, using the WFSExecute function, the
commands to read data from various services are as similar as possible to each other in their syntax and data
structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is not considered to be
fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the Service
Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the
Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is considered to be fundamental
to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling application. An
example would be a request from an application to a cash dispenser to dispense coins; the Service Provider
recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a
WFS_ERR_INVALID_COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error
returns to make decisions as to how to use the service.

Page 7
CWA 15748-13:2008

2. Alarms

This specification describes the functionality of the services provided by Alarms (ALM) under XFS, by defining
the service-specific commands that can be issued, using the WFSGetInfo, WFSAsyncGetInfo, WFSExecute and
WFSAsyncExecute functions. This section describes the functionality of an Alarm (ALM) service that applies to
both attended and unattended (self-service) devices.

The Alarm device class is provided as a separate service due to the need to set or reset an Alarm when one or more
logical services associated with an attended CDM or unattended (self-service) device are locked. Because logical
services can be locked by the application the Alarm is implemented in a separate device class to ensure that a set
(trigger) or reset operation can be performed at any time.

Page 8
CWA 15748-13:2008

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.10

Page 9
CWA 15748-13:2008

4. Info Commands

4.1 WFS_INF_ALM_STATUS

Description This command is used to request the Alarm status.

Input Param None.

Output Param LPWFSALMSTATUS lpStatus;
typedef struct _wfs_alm_status
 {
 WORD fwDevice;
 BOOL bAlarmSet;
 LPSTR lpszExtra;
 } WFSALMSTATUS, *LPWFSALMSTATUS;

fwDevice
Specifies the state of the alarm device as one of the following flags:

Value Meaning
WFS_ALM_DEVONLINE The device is present, powered on and online

(i.e. operational, not busy processing a
request and not in an error state).

WFS_ALM_DEVOFFLINE The device is offline (e.g. the operator has
taken the device offline by turning a switch
or pulling out the device).

WFS_ALM_DEVPOWEROFF The device is powered off or physically not
connected.

WFS_ALM_DEVNODEVICE There is no device intended to be there; e.g.
this type of self service machine does not
contain such a device or it is internally not
configured.

WFS_ALM_DEVUSERERROR The device is present but a person is
preventing proper device operation. The
application should suspend the device
operation or remove the device from service
until the Service Provider generates a device
state change event indicating the condition
of the device has changed e.g. the error is
removed (WFS_ALM_DEVONLINE) or a
permanent error condition has occurred
(WFS_ALM_DEVHWERROR).

WFS_ALM_DEVHWERROR The device is present but inoperable due to a
hardware fault that prevents it from being
used.

WFS_ALM_DEVBUSY The device is busy and unable to process an
execute command at this time.

WFS_ALM_DEVFRAUDATTEMPT The device is present but has detected a
fraud attempt.

bAlarmSet
Specifies the state of the Alarm as either Reset (FALSE) or Set (TRUE).

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

Page 10
CWA 15748-13:2008

In the case where communications with the device has been lost, the fwDevice field will report
WFS_ALM_DEVPOWEROFF when the device has been removed or
WFS_ALM_DEVHWERROR if the communications are unexpectedly lost. All other fields
should contain a value based on the following rules and priority:

1. Report the value as unknown.

2. Report the value as a general h/w error.

3. Report the value as the last known value.

Page 11
CWA 15748-13:2008

4.2 WFS_INF_ALM_CAPABILITIES

Description This command is used to retrieve the capabilities of the Alarm.

Input Param None.

Output Param LPWFSALMCAPS lpCaps;
typedef struct _wfs_alm_caps
 {
 WORD wClass;
 BOOL bProgrammaticallyDeactivate;
 LPSTR lpszExtra;
 } WFSALMCAPS, *LPWFSALMCAPS;

wClass
Specifies the logical service class as WFS_SERVICE_CLASS_ALM.

bProgrammaticallyDeactivate
Specifies whether the Alarm can be programmatically deactivated (TRUE) or can not be
programmatically deactivated (FALSE).

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

Page 12
CWA 15748-13:2008

5. Execute Commands

5.1 WFS_CMD_ALM_SET_ALARM

Description This command is used to trigger an Alarm.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_SRVE_ALM_DEVICE_SET The alarm device has been triggered.

Comments None.

Page 13
CWA 15748-13:2008

5.2 WFS_CMD_ALM_RESET_ALARM

Description This command is used to reset an Alarm.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_SRVE_ALM_DEVICE_RESET The alarm device has been reset.

Comments None.

Page 14
CWA 15748-13:2008

5.3 WFS_CMD_ALM_RESET

Description Sends a service reset to the Service Provider.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments This command is used by an application control program to cause a device to reset itself to a
known good condition.

Page 15
CWA 15748-13:2008

6. Events

6.1 WFS_SRVE_ALM_DEVICE_SET

Description The Alarm has been set (triggered) by an external event or a programmatic request to set (trigger)
the Alarm.

Event Param None.

Comments None.

Page 16
CWA 15748-13:2008

6.2 WFS_SRVE_ALM_DEVICE_RESET

Description The Alarm has been manually or programmatically reset.

Event Param None.

Comments None.

Page 17
CWA 15748-13:2008

7. C - Header file

/**
* *
* xfsalm.h XFS – Alarm (ALM) definitions *
* *
* Version 3.10 (29/11/2007) *
* *
**/

#ifndef __INC_XFSALM__H
#define __INC_XFSALM__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack (push, 1)

/* values of WFSALMCAPS.wClass */

#define WFS_SERVICE_CLASS_ALM (11)
#define WFS_SERVICE_CLASS_VERSION_ALM 0x0A03 /*Version 3.10 */
#define WFS_SERVICE_CLASS_NAME_ALM "ALM"

#define ALM_SERVICE_OFFSET (WFS_SERVICE_CLASS_ALM * 100)

/* ALM Info Commands */

#define WFS_INF_ALM_STATUS (ALM_SERVICE_OFFSET + 1)
#define WFS_INF_ALM_CAPABILITIES (ALM_SERVICE_OFFSET + 2)

/* ALM Execute Commands */

#define WFS_CMD_ALM_SET_ALARM (ALM_SERVICE_OFFSET + 1)
#define WFS_CMD_ALM_RESET_ALARM (ALM_SERVICE_OFFSET + 2)
#define WFS_CMD_ALM_RESET (ALM_SERVICE_OFFSET + 3)

/* ALM Messages */

#define WFS_SRVE_ALM_DEVICE_SET (ALM_SERVICE_OFFSET + 1)
#define WFS_SRVE_ALM_DEVICE_RESET (ALM_SERVICE_OFFSET + 2)

/* values of WFSALMSTATUS.fwDevice */

#define WFS_ALM_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_ALM_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_ALM_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_ALM_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_ALM_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_ALM_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_ALM_DEVBUSY WFS_STAT_DEVBUSY
#define WFS_ALM_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT

/*===*/
/* ALM Info Command Structures */
/*===*/

typedef struct _wfs_alm_status
{
 WORD fwDevice;
 BOOL bAlarmSet;
 LPSTR lpszExtra;
} WFSALMSTATUS, *LPWFSALMSTATUS;

Page 18
CWA 15748-13:2008
typedef struct _wfs_alm_caps
{
 WORD wClass;
 BOOL bProgrammaticallyDeactivate;
 LPSTR lpszExtra;
} WFSALMCAPS, *LPWFSALMCAPS;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif
#endif /* __INC_XFSALM__H */

